5.1 The Area of a Parallelogram

GOAL

Develop and apply the formula for the area of a parallelogram.

1. Fill in the blanks for the parallelogram below.

height _____

2. Complete the table.

,	Base	Height	Area of Parallelogram
a)	3 cm	5 cm	
b)	2 m		16 m ²
c)		6 cm	30 cm ²
d)	5.3 m	3.2 m	
e)		2.4 mm	3.6 mm ²
f)	1.2 dm		0.6 dm ²

At-Home | below |

The height is a line segment drawn to form a right angle with one side of a shape.

The base is the side of a shape that is measured to calculate the area or perimeter of the shape; any side of a shape can be the base of the shape.

For example,

The formula for the area of a parallelogram with base b and height h is $A = b \times h$.

3. a) Estimate the area of each parallelogram, in square units, by counting the squares.

b) Calculate the area of each parallelogram, in square units, using a formula.

5.2 The Area of a Triangle

GOAL

Develop and apply the formula for the area of a triangle.

1. Calculate the area of each triangle.

a)

b)

2. Complete the table.

	Base	Height	Area of Triangle
a)	6 cm	12 cm	
b)		8 mm	32 mm ²
c)	120 m		1200 m ²
d)	14.2 cm	12.3 cm	

At-Home Help

You can think of a triangle as being half a rectangle or a parallelogram.

For example, the shaded triangle below is half the size of a rectangle with the same height and base.

5 cm

10 cm

The area of a triangle is half the area of a rectangle or parallelogram with the same height and base.

Area of a triangle:

 $A=(b\times h)\div 2$

3. Calculate the area of each shape.

- a) triangle ABE
- b) triangle ECD
- c) triangle BEC

5.3 Exploring Circumference and Diameter

GOAL

Investigate the relationship between the diameter and circumference of a circle.

You will need tracing paper, tape, scissors, and a ruler.

You can determine the diameter of a circle by following these steps:

Step 1: Use the centimetre grid at the bottom of the page. Trace and cut out a strip of paper the same length as the circumference of the circle you want to measure.

Step 2: Bend the paper strip into a circle and tape it closed. Don't overlap the edges.

Step 3: Measure the diameter of your paper circle.

At-Home Held

A circumference is the boundary of a circle. It is also the length of this boundary.

A diameter is a line segment that joins two points on the circumference of a circle and passes through the centre. It is also the length of this line segment.

For example,

- 1. What is the diameter of a circle with a circumference of 10 cm?
- 2. What is the diameter of a circle with a circumference of 15 cm?

5.4 Calculating Circumference

Apply the formula for the circumference of a circle using π .

You can use a calculator to answer these questions.

1. Determine the circumference of a circle with each diameter.

a) 6 cm _____ c) 23.7 m _____

- **b)** 11.3 mm _____ **d)** 0.05 cm _____
- 2. Determine the diameter and the circumference of a circle with each radius.

a)

b)

c)

diameter _____ diameter _____ circumference _____

circumference _____

- 7.2 mm

0.1 cm

- diameter _____ circumference _____ circumference _____
- 3. Jessica made a circular garden. The radius of her garden is 4.5 m.
 - a) What is the diameter of the garden?
 - b) Jessica wants to put a wire fence around her garden. How many metres of fencing will she need?
- 4. The circumference of a CD is 37.7 cm. What is its diameter?

At-Home Help

 π (pi) is the ratio of the circumference of a circle to its diameter. Its value is approximately 3.14.

The radius of a circle is half its diameter. The radius is the distance from the center of a circle to a point on a circumference. You can multiply the radius by 2 to calculate the diameter of a circle.

To calculate the circumference of a circle, use this formula:

$$C = \pi \times d$$

where C is the circumference and d is the diameter.

5.5 Estimating the Area of a Circle

Estimate the area of a circle.

- Use the grid to estimate the area of a circle with each diameter.
 - a) 2 units

c) 6 units

b) 4 units

d) 5 units

2. Estimate the area of each circle.

a

c)

b)

5 mm

3. Katie drew a happy face with a diameter of 6 cm. Estimate the area of the happy face.

At-Home | Ne/p

Here are some strategies to estimate the area of a circle:

- Draw a model of the circle on grid paper. Count the number of squares inside the circle.
- Draw a large square outside the circle, and a small square inside the circle. The area of the circle will be between the areas of the two squares.

For example,

area of large square: 4 cm²

area of small square: 3.4 cm²

The area of the circle is between 4 cm² and 3.4 cm².

5.6 Calculating the Area of a Circle

GOAL

Develop and apply the formula for the area of a circle.

You can use a calculator to answer these questions.

1. Determine the area of a circle with each radius.

a) 8 cm _____ c) 10.3 mm ____

b) 2.4 m **d)** 5.5 cm

2. Complete the table. Record your answers to one decimal place.

	Diameter	Radius	Circumference	Area
a)	5.0 cm			
b)		7.5 mm		
c)			45.0 cm	
d)				23.4 m ²
e)	1.8 cm			

At-Home Help

To calculate the area of a circle, use this formula:

$$A = \pi r^2$$

where A is the area, and r is the radius of the circle.

For example, calculate the area of a circle with a radius of 2 cm.

$$A = \pi \times 2 \times 2$$

$$= \pi \times 4$$

$$= 12.56 \text{ cm}^2$$

The area of the circle is about 13 cm².

- 3. Yan's parents breed dogs. Yan built a circular dog run for the dogs to exercise in. The dog run has a radius of 6.3 m.
 - a) What is the diameter of the dog run?
 - b) What is the area of the dog run?
 - c) Yan wants to cover one quarter of the area with grass. How much area does she need to cover?

- 4. Jacob constructed a clock face with a diameter of 22.4 cm.
 - a) What is the circumference of the clock face?
 - b) What is the area of the clock face?

5.7 Solve Problems Using Diagrams

GOAL

Use diagrams to solve problems about the number of degrees in a circle.

1. What is the total area of each figure?

a)

b)

c)

Draw diagrams to solve questions 2 to 4.

- 2. Rectangle A has a base of 8 cm and a height of 4 cm. The base and height of rectangle B are double those of rectangle A. What is the area of rectangle B?
- 3. Each angle of a triangular block is 60°. How many blocks can fit around a point?

4. Circle A has a diameter of 9.0 cm. Circle B has a radius that is four times as long as the radius of circle A. What is the circumference of circle B?