

You will be able to

- analyze and interpret data presented in a circle graph
- decide what kind of data is best displayed in a circle graph
- construct a circle graph using various methods

What can you determine from the circle graph?

Getting Started

Making Decisions

Nolan and Nestor conducted a survey to find out which activity, out of four different activities, their classmates would choose to do in their spare time.

They graphed their results.

What can you conclude about the data in the graph?

- A. How many students are in each class? How do you know?
- **B.** Which activity do Nolan's classmates prefer? Which activity do Nestor's classmates prefer?
- **C.** Create a table that shows the percent of each group that prefers each activity.

- **D.** Combine the two groups. What percent of the combined group prefers each activity?
- **E.** Which activity would you choose for each class if you had to plan a field day? Which activity would you choose for the combined classes? Explain.

What Do You Think?

Decide whether you agree or disagree with each statement. Be ready to explain your decision.

1. The results of a survey to choose a new school colour are easy to interpret quickly by looking at the data in the following chart.

- **2.** A graph is always a good way to show how individual amounts relate to the whole.
- **3.** When you change the vertical scale on a bar graph, the highest bar on the original graph may not be the highest bar on the new graph.
- **4.** The number of people about whom data was collected can always be determined by looking at a bar graph.

11.1 Interpreting Circle Graphs

GOAL

Read and analyze the information in a circle graph.

LEARN ABOUT the Math

A video download site surveyed a large group of people, then made the following graph using the data.

What can you learn from the data in the graph?

- **A.** Why do you think the video site used these categories of viewing to gather its data in the circle graph?
- **B.** Can you tell how many people were surveyed by looking at the graph? Does it matter how many people were surveyed?
- **C.** Which section in the graph is about three times as large as another section? What can the larger section tell you about these types of programs?
- **D.** List three other comparisions you can make using the data in the circle graph.

circle graph

a graph that shows how parts make up a whole

- **E.** Out of 1000 people, about how many watch drama? Explain how you made your estimate.
- F. What else can you conclude from the circle graph?

Reflecting

- **G.** How might someone use the data in the circle graph?
- **H.** Why is a circle graph a good way to communicate this kind of data?

WORK WITH the Math

- A different amount of chocolate milk is sold each day.
- The amounts sold increase every day from Monday to Friday.
- More than half the chocolate milk is sold on the last two days of the week.
- If you order for a week in which Friday is a holiday, reduce your order by $\frac{1}{\mu}$.
- If you order for a week in which Monday is a holiday, reduce your order by $\frac{1}{10}$.

The sections are different sizes.

The sections increase in size from Monday to Friday.

More than half the circle is for Thursday and Friday.

More than $\frac{1}{4}$ of the circle is for the amount sold on Friday.

About $\frac{1}{10}$ of the circle is for the amount sold on Monday.

Example 2 Calculating amounts from a circle graph

Ashley saw this circle graph in the newspaper.

Ashley's older sister has a monthly income of about \$2000. Ashley wants to know how much her sister should be spending in each budget category.

Ashley's Solution

My sister should be spending the following amounts, based on the circle graph:

• Recreation and Education: \$200	I know that 10% of \$2000 is \$200 since 10% is $\frac{1}{10}$.
• Housing and Utilities: \$600	If 10% of \$2000 is \$200, then 30% of \$2000 is 3 × \$200.
• Food and Clothing: \$400	20% is 2 × \$200.
• Health and Personal Care: \$100	5% is half of 10%, which is \$200 \div 2.
• Transportation: \$300	15% is 10% + 5%, so 15% is \$200 + \$100.
• Savings: \$200	Since the last two categories are 10%, each is \$200.
• Miscellaneous: \$200	

 This table shows the amount of time that Canadians listen to different types of radio programs, by percent. Which set of data does each circle graph match?

Type of radio program	a) Listening time for ages 12 to 17 (%)	b) Listening time for all ages (%)
talk	2.3	11.4
sports	0.6	2.5
music	86.3	66.1
other	10.8	20.2

2. Robert surveyed all 24 family members at his family reunion about their favourite kind of pie. Then he prepared the following graph. What advice can Robert give his family members when they are deciding which pies to serve at the next family reunion?

Favourite Kinds of Pie

B Practising

3. Linda sold 200 T-shirts at her stall last weekend. The graph at the left shows what percent of each size was sold. How many medium T-shirts did Linda sell?

Reading Strategy

Write five statements about the circle graph. Share them with a partner. Ask your partner to agree or disagree with your statements.

- **4.** The following graphs show how much space two newspapers give to various sections.
 - a) Why can't you tell which newspaper gets more income from advertising?
 - **b)** Can you tell which newspaper has more sports pages? Explain.

- 5. Today's editions of both newspapers in question 4 have 120 pages. Pick one of the newspapers. How many pages are in each section?
- **6.** Erica surveyed her classmates about what superpower they would want if they could have only one.

Superpower	Percent of total (%)
power to fly	29
super strength	21
invisibility	20
power to read minds	13
power to control weather	7
other	

- a) What percent is "other"?
- **b**) Copy the circle graph into your notebook. Label each section in the circle graph with a name and the percent.
- **7. a)** Write three questions you could ask about the data in question 6.
 - **b)** Exchange your questions with a classmate, and answer each other's questions.
- 8. What information can you not get from a circle graph?

Preferred Superpower

11.2 **Exploring Circle Graphs**

GOAI

Predict how data might be distributed.

EXPLORE the Math

Circle graphs are often a convenient way to display data.

Choose one of the circle graphs below. Think of some data you could collect about your class or school that might end up looking like the graph you chose. Collect the data.

😯 Why do you think the data you collected did or did not end up looking like the graph you chose?

11.3

Constructing Circle Graphs

YOU WILL NEED

- a 100% circle template (Blackline Master)
- a compass
- a protractor
- a calculator

GOAL

Create a circle graph for a data set.

LEARN ABOUT the Math

Sarah asked a group of people what their favourite outdoor exercise is. She recorded her results.

Favourite exercise	Number of people
cycling	16
skateboarding	10
skating	10
skiing	4

How can you represent Sarah's results in a circle graph?

Example 2 Using central angles

I represented Sarah's results in a circle graph using central angles.

Nolan's Solution

Favourite	Number		Central
exercise	ofpeople	Percent (%)	angle (°)
cycling	16	40	40% of 360 = 144
skateboarding	10	25	25% of 360 = 90
skating	10	25	25% of 360 = 90
skiing	Ч	10	10% of 360 = 36
Total	40	100	360

I wrote each number of people as a percent. Then I determined the central angle for each percent. There are 360° in a circle, so 100% of a circle is 360°.

I drew a circle and marked the centre. Since there are two sections with 90° angles, I drew a diameter and split it in half to represent these two sections.

Then I marked a 36° angle for the skiing section.

I checked the remaining section. It should have a 144° angle.

Reflecting

- A. Why do you think circle graphs are sometimes called pie charts?
- **B.** How are the three methods for constructing a circle graph alike? How are they different?
- C. What kind of data would you use each method for?

WORK WITH the Math

A Checking

 Two groups of people at a mall were asked, "What was the first thing you bought here today?"

Group A

ltem	Number of people	Percent (%)
clothing	20	
books	16	
CDs or DVDs	40	
other	4	

Group B

ltem	Number of people	Percent (%)
clothing	30	
books	24	
CDs or DVDs	36	
other	30	

- **a)** Calculate the missing percents.
- **b)** Display the data using a 100% circle template. Explain what you did.
- **c)** Combine the two sets of data. Create a circle graph using a compass and a protractor to display the combined data.

B Practising

2. Charlotte surveyed 150 people. Write each number of people as a percent. How many degrees does the central angle of each section have?

a) 50 b) 75 c) 20 d) 5

3. Milk is 88% water, 5% carbohydrates, 3% fat, 3% protein, and 1% inorganic material. Represent the composition of milk in a circle graph.

Flavour	Percent sold (%)	Central angle (°)
vanilla	28	
mint chocolate chip	6	
chocolate	42	
strawberry	12	
bubble gum	12	
Total	100	360°

4. The following table shows the flavours of ice cream that were sold at a school sports day.

- **a)** Complete this table.
- **b)** Display the data in a circle graph.
- **c)** Create a question about the data. Answer your question.
- **5.** The table at the left shows activities that were organized for birthday parties. Display the data in a circle graph.
- 6. This table shows the results of a survey of Canadian adults.

Education	Number (in thousands)
0 to 8 years	2.2
some high school	4.0
high school graduate	4.9
some post-secondary	2.5
post-secondary certificate or diploma	7.5
university degree	4.4
Total	25.5

- a) Enter the data in a spreadsheet.
- **b)** Display the data in a circle graph using the spreadsheet.
- **c)** What calculation do you think the spreadsheet program did to create the circle graph?
- **7.** What are some ways you can check that your circle graph is correct?

Activity	Percent (%)
cards	8
board games	5
video games	45
arcade	12
movies	30

11.4 Communicate about Circle Graphs

GOAL

Use data and graphs to support conclusions.

LEARN ABOUT the Math

Jessica wants her mother to increase her allowance. She decides to convince her mother that she needs a larger allowance by putting together a report that shows her spending and saving habits. She makes a circle graph to display how she uses her allowance. She asks Ashley to comment on her report.

How can Jessica improve her report?

Jessica's Report

Ashley's Comments

Allowance	Amount earned	Amou spent entertai	int On nment	Amount spent on food	Amount spent on clothes	Amount spent on music	Amount saved
\$40 \$60 \$29			}	\$31	\$14	\$12	\$14
savir 14 music	ngs % entert mer	ain- nt	I or The	ganized my In I used th	y data in a ne graphin	ı spreadsh g program	neet. <
12% 29% clothes 14% 14% food 31%							
I chose a circle graph to show my spending and saving habits							
I gave my graph a title and labelled the sections of the graph with percents.							
I showed that almost 31% of my allowance goes to food, which I need, so I really have only 69% of my allowance for other expenses.							
From my graph, I can conclude that I spend more than I save. 🔫							

Communication Checklist

- Did you include all the important details?
- Did you make reasonable conclusions?
- Did you justify your conclusions?

- **A.** Which of Ashley's comments do you think is most important for improving Jessica's report? Why?
- **B.** What additional suggestions can you make to help Jessica improve her report?

Reflecting

C. Do you think Jessica presented a convincing argument for increasing her allowance?

WORK WITH the Math

Example Using a circle graph to support a conclusion

Favourite Drink

other

5%

juice

10%

Nick surveyed 40 students after gym class about what kind of drink they like best after exercising. He prepared

Favourite Fruit

A Checking

 Petra surveyed 40 students at the school picnic about their favourite fruit. She concluded that berries should not be served at the next picnic, since less than half of the graph is berries. What do you think about Petra's interpretation of the data?

B Practising

2. Kevin wrote a report about the food he ate in a week. He used a circle graph. What questions would you ask to help Kevin draw more conclusions in his report?

- **3.** The circle graph at the left shows favourite foods at a campfire cookout. Write a report based on the data in the graph. Share your report with a classmate, and ask for ways to improve it.
- **4.** Look on the Internet or in newspapers and magazines to find circle graphs that show similar information. Explain how the circle graphs are similar and how they are different.
- **5.** When you are studying a circle graph, what kind of questions should you ask yourself about the information it shows?

MATH GAME

Race to 100%

Number of players: 2 or more

YOU WILL NEED

- a bag
- different-coloured counters
- counters
- a compass

How to Play

- 1. Assign each player a different colour of counter. Put all the counters in the bag.
- **2.** One player reaches into the bag and pulls out a handful of counters. This player then draws a circle graph as follows:
 - Draw a circle and place the counters around it, equally spaced. Place all the counters of each colour together.
 - Draw line segments from the centre of the circle to the places on the circumference where the colours change. Label each section with its colour and percent, to the nearest 1%.
 - Record the percent for each colour in a table.
- **3.** Players take turns pulling counters from the bag and drawing a circle graph. Players add the percents for each turn to the percents for the previous turn.
- 4. The first player to accumulate 100% or more wins.

Denis's Circle Graph

yellow

15%

I had the second turn.

I pulled out three blues, one yellow, two reds, and two purples.

I drew the circle graph and recorded the percents.

Now I'm tied for first.

	Chad:	Denis:	Jorge:	Akeela:
	red	uellow	blue	purple
	204	HAY	-10%	-9At
\rangle	rrw	- 1018 - TTN	10% F.0%	1150
	55%	55%	50%	15%

CURIOUS MATH

Graphs of Different Shapes

A circle graph is used to represent data as parts of a whole.

Could you use a triangle, a square, a rectangle, or any other shape to represent the same kind of data?

The following table and circle graph show the types of paper students bought for school at a local store on one day.

Type of paper	Number of packages
lined	64
plain	8
graph	8

Types of Paper Purchased

1. Draw a rectangle with 10 squares that are the same size. Colour the rectangle to represent the percents of types of paper bought.

- 2. Represent the same data using a different shape. Explain your choice.
- **3.** Is one shape easier to use than the other for drawing a graph? Explain.

Chapter Self-Test

1. A Grade 7 class surveyed 500 students, asking which language their mother speaks. They displayed the data they gathered in the following table.

Language	Number of mothers
Arabic	30
Chinese	90
English	100
French	90
Hindi	60
Ukrainian	80
other*	50

Language Mother Speaks at Home

*includes Cree, Punjabi, Japanese, Korean, and more

- **a)** Display these data in a circle graph.
- **b)** What are some facts you can learn from your graph?
- 2. Suppose that you manage two movie theatres. The following circle graphs show the percents of different types of movies shown each year at your theatres. Theatre 1 is more successful than Theatre 2. What changes might you make to the movies shown at Theatre 2 to increase its audiences? Explain any assumptions you make.

- **3.** Gary's older brother weighs 80 kg. His body consists of 39.8 kg of muscle, 14.9 kg of fat, 14.2 kg of bone, and 11.1 kg of other tissue. Display the data in a circle graph.
- **4.** A major league baseball player's record of outcomes for his first 600 times at bat is shown in the following graph.

- a) How many times did the player get on base?
- **b)** How many home runs did he get?
- **5.** For a probability experiment, Hoshi grabbed coloured counters from a bag three times.

Colour	First handful	Second handful	Third handful		
blue	6	4	2		
red	4	5	5		
brown	2	3	4		
green	5	4	3		
orange	3	2	2		
yellow	2	2	4		

- a) Construct a circle graph for each handful.
- **b)** What is the central angle of each section in your third circle graph?

What Do You Think Now?

Revisit What Do You Think? on page 467. How have your answers and explanations changed?

Chapter Review

Frequently Asked Questions

Favourite Kind of Pie

- **Q:** How do you read a circle graph?
 - A: Look at the title of the graph, the relative sizes of the individual sections, and the labels on these sections.

For example, consider the graph at the left.

The title of the graph gives an overview of the information displayed in the graph.

Each section represents one part of the whole. The size of each section represents its fraction of the whole.

The label on each section gives the category name and a percent, so that you know the size of the section.

There may be a legend that identifies the categories by colour.

Q: How can you draw a circle graph?

- A1: Calculate the number of degrees the central angle for each section should be by multiplying the percent value, expressed as a decimal, by 360°. Then draw the sections using a ruler and a compass. Colour each section, label it with the category and percent, and give the graph a title.
- A2: Convert each amount into a percent of the whole. Then use a 100% circle template with benchmark percents to draw sections based on the percents you calculated. Colour each section, label it with the category and percent, and give the graph a title.
- **A3:** Enter the data into a spreadsheet program, and use the program to create a circle graph. Give the graph a title.

488 Chapter 11

Practice

Lesson 11.1

1. A company surveyed 4000 employees about how they get to work. The data collected are shown in the following circle graph.

How People Get to Work

- a) How many employees walk or ride a bicycle to work?
- **b)** How many people use a car, truck, or van to get to work?
- c) What could "other means" of transportation be?

Lesson 11.3

2. Anne recorded the colours of 100 cars in the parking lot of a supermarket.

Colour of car	Number of cars of each colour				
white	20				
silver	32				
black	18				
red	12				
blue	18				

- **a)** Why would a circle graph be an appropriate way for Anne to display her data?
- **b)** Display Anne's data in a circle graph.
- **3.** A 300 g container of yogurt contains 228 g of water, 54 g of carbohydrates, 12 g of protein, and 6 g of fat.
 - **a)** Display the data in a circle graph.
 - **b)** Create a problem based on your graph. Exchange your problem with a classmate, and solve each other's problem.

Source	Revenue (\$)			
registration	25 000			
dances	3 500			
ticket sales	2 750			
sponsors	6 000			

- **4.** The revenue of a local hockey team for a season is shown at the left.
 - a) What was the club's total revenue for the season?
 - **b)** Create a circle graph that displays the club's sources of revenue.
 - **c)** Approximately what percent of the club's revenue came from sponsors?
 - **d)** How do the revenues from ticket sales and sponsors compare?
 - e) What three sources provide about 85% of the revenue?

Lesson 11.4

5. The following database shows the lunchtime drink choices of the Grade 7 and 8 students in a school:

Type of drink	Grade 7	Grade 8
bottled water	12	20
milk	19	12
apple juice	11	13
orange juice	13	27
grapefruit juice	20	4
no drink	5	8

- **a)** Which grade has a greater percent of students who prefer juice?
- **b)** Which three drinks should be sold in the school cafeteria? Present your opinion in a letter to the principal. Include a circle graph to make your letter convincing.
- **6. a)** Look on the Internet or in newspapers and magazines for data that can be displayed using a circle graph. Create a circle graph to display the data.
 - **b)** Write a statement that explains what the data suggests, and support your statement with your graph.
 - **c)** Trade statements with a classmate. Give each other suggestions on how to improve your statements.

Chapter 11

Chapter Task

Task | Checklist

- Are your results in an appropriate form?
- Are your results easy to understand?
- Did you justify your conclusions?

Designing a Spinner

A game company wants to design a spinner that will work just like rolling two dice. In this game, there are three outcomes:

• If you roll a sum from 2 to 4, you get three counters and another roll.

• If you roll a sum from 5 to 8, you get two counters.

• If you roll a sum from 9 to 12, you get one counter.

- A. Calculate the theoretical probability of each outcome.
- **B.** Create a circle graph with three different sections. The sizes of the sections are determined by the theoretical probabilities you calculated in part A.
- **C.** Use your circle graph to build a spinner. Label the sections.
- **D.** Conduct an experiment to compare the outcomes on your spinner with the outcomes when rolling two dice. Record the data.
- **E.** Does your spinner work just like rolling two dice? Write a report to the game company, explaining why the company should use your spinner.

Cumulative Review

Note: Select ALL the correct answers to each question.

Cathie received the following marks on five quizzes: 93%, 76%, 85%, 93%, and 3%. Use these marks to answer questions 1, 2, 3, 4, and 5.

1.	Wl	hat is the rang	e of	f Cathie's ma	ırks	?		
	Α.	3	B.	75	С.	90	D.	93
2.	2. What is the mode of Cathie's marks?							
	Α.	3%	В.	76%	С.	85%	D.	93%
3.	W	hat is the med	ian	of Cathie's r	narl	ks?		
	Α.	3%	В.	76%	C .	85%	D.	93%
4.	W	hat is the mea	n of	Cathie's ma	ırks	?		
	Α.	70%	В.	76%	C .	87%	D.	93%
5.	Wl	nat is the mear	n of	Cathie's mar	ks i	f the outlier	is no	ot included?
	Α.	70%	В.	76%	С.	87%	D.	93%
Que	estic	ons 6, 7, and 8	8 ref	er to the spi	nne	r shown at t	he l	eft.
6.	Wl	hat is the theo	reti	cal probabili	ity c	of spinning a	5?	
	Α.	5%	В.	10%	С.	20%	D.	50%
7.	W	hat is the theo	reti	cal probabili	ity c	of spinning a	mu	ltiple of 3?
	Α.	$\frac{1}{3}$	В.	$\frac{3}{10}$	C .	$\frac{1}{5}$	D.	$\frac{1}{10}$
8	W/1	J hat is the theo	reti	cal probabili	itv c	J of spinning a	n e	ven number
0.	and tossing a tail with a coin?							
	Α.	0.2	В.	25%	С.	0.5	D.	50%
9.	W	nich solutions	are	correct?				
	Α.	7 <i>n</i> = 84; <i>n</i> =	= 77	7	С.	q + 14 = 4	0; 0	q = 26
	В.	c-9=79;	<i>c</i> =	88	D.	4z + 4 = 5	2; z	= 13
10.	W	hat is the valu	e of	p in 13 = p	- 2	27?		
	Α.	-40	В.	-14	С.	14	D.	40

Chapters 8–11

11. Kim is 10 years old. Which expression tells how old Kim will be *y* years from now?

A. 10 - y **B.** 10y **C.** 10 + y **D.** $\frac{y}{10}$

12. One pizza serves six people. Chris bought *p* pizzas for his party. Which expression tells how many people were served at Chris's party?

A.
$$p - 6$$
 B. $6p$ **C.** $p + 6$ **D.** $\frac{p}{6}$

13. Solve $\frac{n}{5} + 2 = 7$ using the graph below.

14. Kale sold 200 ice cream cones at his stand last week. The following graph shows the percent of each kind he sold. How many vanilla ice cream cones did he sell?

